A. Tolman and R. B. King for their interest and gifts of ligands and Dr. D. L. Knirk for advice and the loan of a program.

References and Notes

(1) C. A. Tolman, J. Amer. Chem. Soc., 92, 2956 (1970).
(2) C. A. Toiman, W. C. Seidel, and L. W. Gosser, J. Amer. Chem. Soc., 96, 53 (1974)
(3) K. W. Barnett, T. G. Poliman, and T. W. Solomon, J. Organometal. Chem., 36, C23 (1972); M. Pańkowskl and M. Bigorgne, J. Organometal. Chem., 30, 227 (1971); S. J. Lippard and J. J. Mayerie, Inorg. Chem., 11, 85 (1972); C. K. Brown and G. Wilkinson, J. Chem. Soc. A, 2753 (1970); P. Rigo and A. Turco, Coord. Chem. Rev., 8, 175 (1972).
(4) D. H. Geriach, W. G. Peet, and E. L. Muetterties, J. Amer. Chem. Soc., 94, 4545 (1972); P. Meakin, E. L. Muetterties, and J. P. Jesson, ibid., 95, 75 (1973)
(5) L. G. Marzill, P. A. Marzilil, and J. Haipern, J. Amer. Chem. Soc., 93, 1374 (1971); J. Halpern and P. Phelan, lbid., 94, 1881 (1972); P. Meakin, E. L. Muetterties, F. N. Tebbe, and J. P. Jesson, ibid., 93, 4701 (1971); M. Y. Darensbourg, H. L. Conder, D. J. Darensbourg, and C. Hasday, ibid., 95, 5919 (1973); G. R. Dobson and J. K. Payson, ibid., 95, 5925 (1973).
(6) D. Evans, J. A. Osborn, and G. Wiikinson, J. Chem. Soc. A, 3133 (1968); R. L. Pruett and J. A. Smith, J. Org. Chem., 34, 327 (1969); J. Falbe, "Synthesen mit Kohlenmonoxide," Springer-Verlag, Berln, 1967. p 4 ff; C. A. Tolman, J. Amer. Chem. Soc., 92, 6785 (1970).
(7) For a review of the importance of electronic effects of phosphorus donors see J. G. Verkade, Coord. Chem. Rev., 9, 1 (1972); T. G. Appleton, H. C. Clark, and L. E. Manzer, Coord. Chem. Rev., 10, 335 (1973).
(8) C. A. Toiman, J. Amer. Chem. Soc., 92, 2953 (1970).
(9) W. C. Trogler, R. C. Stewart, L. A. Epps, and L. G. Marzilli, Inorg. Chem., 13, 1563 (1974).
(10) D. Dodd and M. O. Johnson, Organometal. Chem. Rev., 52, 1 (1973).
(11) F. A. Cotton and J. G. Norman, Jr., J. Amer. Chem. Soc., 93, 80 (1971). Bond lengths are quite similar for cobaloximes. ${ }^{12}$ A. Chakrovortz, Coord. Chem. Rev., 13, 1 (1974).
(12) W. W. Adams and P. G. Lenhert, Acta Crystallogr., Sect. B, 29, 2412 (1973).
(13) H. M. McConnell, J. Chem. Phys., 27, 226 (1957).
(14) The anisotropy of the dioxime ligands can also explain $\sigma_{\text {MMR }}$ but an explanation for σ OMR is not evident.
(15) The expression was

$$
\mathrm{TCA}=\sum_{i=1}^{4} \mathrm{C}_{i}\left(1.0-\frac{0.15}{(T-7.0)}\right)^{i-1}
$$

and the method of least squares gave $\left(C_{1}-C_{4}=116.7,81.6,-310.9\right.$, and 465.4, respectively). Only symmetric ligands with TCA ≥ 118 were employed. TCA's given by Torman were used except (1) for $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{P}$, a value of TCA $=155^{\circ}$ was used and (2) for $\left(i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}\right)_{3} \mathrm{P}$ a TCA $=122^{\circ}$.
(16) W. C. Trogler, R. C. Stewart, and L. G. Marzilli, J. Amer. Chem. Soc., 96, 3697 (1974).
(17) H. A. O. Hill and K. G. Morallee, J. Chem. Soc. A, 554 (1969); E. S. Gore, J. C. Dabrowiak, and D. H. Busch, J. Chem. Soc., Chem. Commun., 923 (1972); W. L. Joliy, A. D. Harris, and T. S. Briggs, Inorg. Chem., 4, 1064 (1965); D. N. Hendrickson and W. L. Jolly, ibid., 9, 1197 (1970).

William C, Trogler, Luigi G, Marzilli*
Department of Chemistry, The Johns Hopkins University Baltimore, Maryland 21218
Received July 5, 1974

The (trans $-\mathbf{2}^{\prime}$-Methylcyclopropyl)methyl System. Stereochemistry of Ionization, Rearrangement, and Solvent Capture ${ }^{1}$

Sir:
Acceptance of bisected structures for cyclopropylcarbinyl cations is based on a growing body of experimental ${ }^{2}$ and theoretical work. ${ }^{2,3}$ However, except for molecular orbital calculations, ${ }^{3}$ all of the available evidence which strongly supports bisected cations was obtained with secondary and tertiary systems. ${ }^{2}$ Recently Olah and coworkers ${ }^{4}$ challenged the concept that the parent cation (a primary system) is bisected and have proposed an unsymmetrically bridged structure on the basis of ${ }^{13} \mathrm{C}$ chemical shift comparisons. Subsequently the use of ${ }^{13} \mathrm{C}$ chemical shifts to decide between bisected and bridged structures was questioned, ${ }^{5}$ but there were still no direct experimental data to support a bi-

Scheme I

sected cation for primary cyclopropylcarbinyl systems. In this communication we present stereochemical evidence which bears on this important structural question.

Methanesulfonate 5 was prepared from optically active trans-2-methylcyclopropanecarboxylic acid by the sequence of reactions shown in Scheme I. Assuming that yeast alcohol dehydrogenase reduction of aldehyde 3 is stereospecific, ${ }^{6}$ the alcohol ${ }^{7}$ used to prepare 5 was a mixture of diastereomers- $77 \% 1 S, 1^{\prime} R, 2^{\prime} R$ and $23 \% ~ I S, 1^{\prime} S, 2^{\prime} S$.

Hydrolysis of 5 ($77 \% 1 S, 1^{\prime} R, 2^{\prime} R$) in 60% acetonewater with 2 equiv of γ-collidine, $k^{25}=(8.2 \pm 0.2) \times$ $10^{-2} \mathrm{sec}^{-1}$, gave three major products; 4 (26%), 6 (56%), and 7 (18%). The ${ }^{2} \mathrm{H}$ distribution in each alcohol was deduced by measuring ${ }^{1} \mathrm{H} \mathrm{nmr}$ intensities for samples where the chemical shifts of protons $\mathrm{H}_{1}-\mathrm{H}_{4}$ were separated as far as possible using $\mathrm{Eu}(\mathrm{fod})_{3}$. Chemical shift assignments ${ }^{9}$ for $4\left(0.235 \mathrm{mmol}\right.$ of $\left.\mathrm{Eu}(\mathrm{fod})_{3} / 0.413 \mathrm{mmol}\right),{ }^{10} 6(0.076 \mathrm{mmol}$ of $\left.\mathrm{Eu}(\mathrm{fod})_{3} / 0.384 \mathrm{mmol}\right),{ }^{11}$ and $7\left(0.118 \mathrm{mmol}\right.$ of $\mathrm{Eu}(\mathrm{fod})_{3} /$ $0.257 \mathrm{mmol})^{12}$ are summarized below. Although alcohols 4,

6, and 7 are each inseparable mixtures of four ${ }^{2} \mathrm{H}$ isomers, the mole fractions of ${ }^{2} \mathrm{H}$ isomers for each skeletal isomer (${ }^{2} \mathrm{H}$ at positions $\mathrm{H}_{1}-\mathrm{H}_{4}$) correspond directly to the ${ }^{2} \mathrm{H}$ intensities listed in Table I.

An abbreviated mechanism is presented in Scheme II to account for the observed ${ }^{2} \mathrm{H}$ distribution. Using the data in Table I, ${ }^{13}$ the stereochemistries of five individual stepsionization of 5 , reaction of 8 with solvent at C_{1}, rearrangement of 8 to its enantiomer and to 9 , and reaction of 9 with

Scheme II

solvent at C_{1}-can be deduced. ${ }^{14}$ Our results are summarized by following the reactions initiated by ionization of mesylate 5 from conformer 5a. Ionization is steredselective with $74 \pm 5 \%$ of the mesylate ionizing from conformer 5 a and the remainder from $\mathbf{5 b}$. Nucleophilic attack by water at C_{1} of cation $\mathbf{8 (1)}$ is also stereoselective, with $72 \pm 7 \%$ going to 4(1) and the remainder to 4(2). ${ }^{16}$ Cyclopropylcarbinylcyclopropylcarbinyl rearrangements $8(1) \rightarrow 8(3)$ and $8(1)$ $\rightarrow 9(1)$ are stereoselective, 94 ± 8 and $84 \pm 18 \%$, respectively. ${ }^{17}$ The reaction of bisected cation $9(1)$ with water at C_{1} produces equal amounts of 7(1) and 7(3), as expected. ${ }^{18}$ Complementary stereo- and regiochemical behavior was found for reactions initiated by ionization of 5 from conformer 5b,

Replacing a hydrogen at C_{2}, by a methyl group enhances the solvolytic rate of 5 by 14.4 relative to the parent mesyl-
ate. ${ }^{19}$ By dissecting the rate enhancement for 5 into individual enhancements for conformers $5 \mathbf{a}$ (10.9) and $\mathbf{5 b}$ (3.5), it is obvious that both transition states are stabilized by the methyl group. The difference in rates is only a factor of 3.1 , and could be attributed to electronic (slight preference for ionization from conformer $\mathbf{5 a}^{\mathbf{6 a}}$) or steric factors (slight buttressing which favors conformer 5a). Obviously the electronic effect of an alkyl substituent at $\mathrm{C}_{2}{ }^{\prime}$ with regard to influencing the stereochemistry at C_{1} during ionization or reaction with solvent is small and had been previously overestimated because of conformational and steric complications. ${ }^{20}$ The lack of stereospecificity in some cyclopropylcarbinyl systems ${ }^{21}$ is now easily understandable.
Finally, our data provide strong evidence for bisected cyclopropylcarbinyl cations as intermediates during solvolysis of primary systems. Sizeable rate enhancements for both

Table I. Relative ${ }^{1} \mathrm{H}$ and ${ }^{2} \mathrm{H}$ Intensities in 2-OH, 4-OH, and 5-OH

Compound		H_{1}	H_{2}	H_{3}	H_{4}
4 (before hydrolysis)	${ }^{1} \mathrm{H}^{a}$	0.23	0.77		
	${ }^{2} \mathrm{H}^{b}$	0.77	0.23		
4 4 (after hydrolysis)	${ }^{2} \mathrm{H}^{c}$	1.00			
	${ }^{1} \mathrm{H}^{a}$	0.60	0.67	0.84^{d}	0.89
	${ }^{2} \mathrm{H}^{b}$	0.40	0.33	0.16	0.11
	${ }^{2} \mathrm{H}^{c}$	0.43	0.30	0.18	0.09
	${ }^{1} \mathrm{H}^{d}$	0.53	0.76	1.71^{e}	
	${ }^{2} \mathrm{H}^{b}$	0.48	0.24	0.28	
	${ }^{2} \mathrm{H}^{c}$	0.57	0.15	0.28	
	${ }^{1} \mathrm{H}^{a}$	0.68	0.82	0.68	0.82
	${ }^{2} \mathrm{H}^{b}$	0.32	0.18	0.32	0.18
7	${ }^{2} \mathrm{H}^{c}$	0.37	0.13	0.37	0.13

${ }^{a}$ All ${ }^{1} \mathrm{H}$ integrated intensities were obtained on a Varian XL-10015 nmr spectrometer with an external ${ }^{19} \mathrm{~F}$ lock. Each value represents the average of 20 integrations and was calculated on the basis $\Sigma^{4}{ }_{n=1} H_{n}=3$. Average deviations $\leq 0.01 .{ }^{6}{ }^{2} \mathrm{H}=1-{ }^{1} \mathrm{H}$. ${ }^{c}$ Corrected for 23% of the $1 S, 1^{\prime} S, 2^{\prime} S$ diastereomer in starting mesylate. ${ }^{d}$ Overlaps signal for H_{5}, total intensity at 1.84 . ${ }^{e}$ Not sufficiently separated to integrate individually.
conformers of 5 by the $\mathrm{C}_{2^{\prime}}$ methyl group suggest interaction of the developing p orbital at C_{1} with both adjacent cyclopropane bonds. In contrast, an unsymmetrically bridged bicyclobutonium structure ${ }^{22}$ implies interaction between C_{1} and only one of the two adjacent cyclopropane bonds. One might have expected the methyl at $\mathrm{C}_{2^{\prime}}$ to be more stabilizing than a factor of 3.1 for formation of $\mathbf{1 0} \mathrm{vs} .11 .{ }^{24}$ How-

10

11
ever, more compelling evidence for a bisected primary cyclopropylcarbinyl cation comes from comparisons of isotopic distributions in alcohols 4, 6, and 7. Alcohol 4(1) comprises 71% of $\mathbf{4}(1)+\mathbf{4 (3)}$ and $\mathbf{4 (2)}{ }^{15}$ comprises 77% of $\mathbf{4}(2)$ $+4(4)$. In addition $4(1)+4(2), 6(1)+6(2)$, and $7(1)+$ 7 (2) constitute 73,72 , and 74%, respectively, of alcohols 4 , 6, and 7. These similarities indicate that the distributions of ${ }^{2} \mathrm{H}$ isomers in each skeletal isomer only differ by a factor representative of the proportion of 5 which ionizes from each conformer. Bisected cations $8(1)$ and $8(2)$ should have nearly identical stereo- and regiochemistries for reaction with solvent and rearrangement in agreement with our findings, whereas bicyclobutonium ions 10 and 11 should not.
Supplementary Material Available, Reduction of the data will appear following these pages in the microfilm edition of this volume of the journal. Photocopies of the supplementary material from this paper only or microfiche ($105 \times 148 \mathrm{~mm}, 24 \times$ reduction, negatives) containing all of the supplementary material for the papers in this issue may be obtained from the Journals Department, American Chemical Society, 1155 16th St., N.W., Washington, D.C. 20036. Remit check or money order for $\$ 4.00$ for photocopy or $\$ 2.00$ for microfiche, referring to code number JACS-74-7591.

References and Notes

(1) Acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, Research Corporation, and the Research Committee of the University of Utah for support of this research.
(2) For excellent reviews see (a) H. G. Richey, Jr., "Carbonium lons," Vol. 3, G. A. Otah and P. v. R. Schieyer, Ed., Wiley, New York, N.Y., 1972, p 1201; (b) K. B. Wiberg, B. A. Hess, and A. J. Ashe, III, jbid, p 1295.
(3) (a) W. J. Hehre and P. C. Hiberty, J. Amer. Chem. Soc. 96, 304 (1974); (b) K. B. Wiberg and G. Szeimies, Ibid. 92, 571 (1970).
(4) (a) G. A. Olah, C. L. Jeuell, D. P. Kelly, and R. D. Porter, J. Amer. Chem. Soc., 94, 146 (1972); (b) G. A. Olah and G. Liang, ibid., 95, 3792 (1973).
(5) (a) D. F. Eaton and T. G. Trayior, J. Amer. Chem. Soc., 96, 1226 (1974); (b) H. C. Brown and E. N. Peters, ibid., 95, 2400 (1973)
(6) (a) C. D. Poulter, J. Amer. Chem. Soc., 94, 5515 (1972); (b) V. E. Althouse, D. M. Feigl, W. A. Sanderson, and H. S. Mosher, J. Amer. Chem. Soc., 88, 3595 (1966).
(7) The observed rotation for $4,[\alpha]{ }^{30} \mathrm{D}-26.0^{\circ}$ (c $0.85, \mathrm{CHCl}_{3}$), corresponds to $77 \% 1 S, 1^{\prime} R, 2^{\prime} R$ and $23 \% 1 S, 1^{\prime} S, 2^{\prime} S$ if one assumes that the deuterium at C_{1} does not contribute to the observed rotation. An nmr spectrum of 4 with $\mathrm{Eu}(\mathrm{fod})_{3}$ shows clearty resolved diastereotoplc protons at C_{1} ($\Delta \delta$ up to 0.3 ppm). The two broad doublets of unequal intensity collapse to two singlets of unequal intensity, 0.77 ± 0.01 and 0.23 ± 0.01 protons, upon irradiation at the H_{6} resonance frequency. The upfield signal results from hydrogen in the pro-R position of the $1 S, 1^{\prime} R, 2^{\prime} R$ diastereomer, and the downfield signal, from hydrogen in the pro-R position of the $1 S, 1^{\prime} S, 2^{\prime} S$ diastereomer.
(8) (a) M. Julia and Y. Noel, Bull. Soc. Chim. Fr., 3756 (1968); (b) M. Julla, Y. Noel, and R. Guegan, ibid., 3742 (1968).
(9) Nmr spectra were taken in carbon tetrachioride and chemical shifts are reported as $\mathrm{ppm}(\delta)$ downfield from internal tetramethylsilane.
(10) $J_{1,2}=11 \mathrm{~Hz}, J_{1,6}=J_{2,6}=7 \mathrm{~Hz}, J_{3,4}=J_{4,5}=4 \mathrm{~Hz}, J_{4,6}=11$ $\mathrm{Hz}, J_{5, \mathrm{CH}_{3}}=6 \mathrm{~Hz}$.
(11) $J_{1,6}=17.6 \mathrm{~Hz}, J_{2,6}=10.5 \mathrm{~Hz}, J_{3,5}=J_{4,5}=J_{5, \mathrm{CH}_{3}}=6.4 \mathrm{~Hz}, J_{3,6}$ $=J_{4,6}=7.3 \mathrm{~Hz}$.
(12) $J_{1,2}=4.8 \mathrm{~Hz}, J_{1,3}=9.4 \mathrm{~Hz}, J_{1,4}=5.3 \mathrm{~Hz}, J_{1.6}=J_{3,6}=4.8 \mathrm{~Hz}$, $J_{2,3}=5.2 \mathrm{~Hz}, J_{2,4}=8.8 \mathrm{~Hz}, J_{2,6}=J_{4,6}=J_{5,6}=8.0 \mathrm{~Hz}, J_{3,4}=$ $4.2 \mathrm{~Hz}, J_{5, \mathrm{CH}_{3}}=6.0 \mathrm{~Hz}$.
(13) Reduction of the data will appear foliowing these pages in the microfilm edition of this volume of the journal. See paragraph at end of paper regarding supplementary material.
(14) A detailed treatment of the data will be furnished in the full paper. Isotope effects should be small but may introduce small errors for comparisons between skeletal isomers or positional ${ }^{2} \mathrm{H}$ isomers. ${ }^{15}$
(15) B. Boricnik, Z. Majerski, S. Borcic, and D. E. Sunko, J. Org. Chem., 38, 1881 (1973).
(16) A careful analysis of the data suggests that a small amount of $4(2)$ is formed from 5 by a k_{s} process.
(17) The stereochemistries of the cyclopropyicarbinyl-cyclopropylcarbinyl rearrangements agree with previous work, ${ }^{2}$ and a high degree of stereoselectivity is expected. The large uncertainty for $8(1) \rightarrow 8(2)$ arises because the concentrations of 4(3) and 4(4) cannot be determined with the same accuracy as those of $6(1), 6(2), 7(1)$, and $7(2)$.
(18) H. G. Richey and J. Richey, J. Amer. Chem. Soc., 88, 4971 (1966).
(19) $k^{25^{\circ}}=5.7 \times 10^{-3} \mathrm{sec}^{-1}$ in 60% acetone-water.
(20) (a) C. D. Poulter and S. Winstein, J. Amer. Chem. Soc., 92, 4282 (1970); (b) C. D. Poulter, E. C. Friederich, and S. Winstein, ibid., 92, 4274 (1970).
(21) E. C. Friederich and M. A. Saleh, J. Amer. Chem. Soc., 95, 2617 (1973).
(22) The structure snown on p 151 (ref 4a), for a ' $\mathrm{C}_{2,4}$ - $\mathrm{ayclopropyicarboni-}$ um ion," is very similar to that used by Roberts ${ }^{23}$ and coworkers (p 281 , Figure 6) to describe a "bicyclobutonium ion."
(23) R. H. Mazur, W. N. White, D. A. Semenow, C. C. Lee, M. S. Silver, and J. D. Roberts, J. Amer. Chem. Soc., 81, 4390 (1959).
(24) Ionization of 5 a should give 10, while ionization of 5 b should give 11. (25) University of Utah Research Fellow, 1971-1973.

C. Dale Poulter,* Charles J. Spillner ${ }^{25}$
Department of Chemistry, University of Utah
Salt Lake City, Utah 84112
Received October 2, 1974

Structure of Hexameric Trimethylsilyllithium, a Folded Chair

Sir:

We wish to report the first crystal structure of a hexameric lithium derivative which provides a detailed picture of the lithium aggregate in $\left(\mathrm{LiSiMe}_{3}\right)_{6}$ and also shows the participation of silicon in an electron deficient structure. ${ }^{\dagger}$ Two views of this structure are shown in Figure 1a and 1b. It is found that the trimethylsilyllithium framework can best be represented as a chair-form six-membered lithium ring of approximate $D_{3 d}$ symmetry with each face occupied by a bridging trimethylsilyl group. This is in contrast to the distorted octahedron with two open faces previously postulated for simple hexameric organolithium derivatives, ${ }^{1}$ and to the hydrogen-bridged structure proposed by Craubner. ${ }^{2}$ The 12 shortest lithium-lithium distances fall into two classes of six distances each. The shorter of these two classes averages $2.70 \AA$ (av esd $0.03 \AA$) and occurs between the lithium atoms adjacent to one another on the edge of the ring. This distance is close to twice the covalent radius ($1.23 \AA$) and is similar to the lithium-lithium bond distance (2.42-2.63 \AA) observed in the methyl ${ }^{3}$ and ethyllithium tetramers ${ }^{4}$ and to that recently reported in the dimeric bicy-

